Polyfluoroalkyl N-(Trifluoromethylsulfonyl)amidosulfites, Number One Stable NH-Containing Amidosulfites

B. A. Shainyan and L. L. Tolstikova

Faworsky Irkutsk Institute of Chemistry, Siberian Division, Russian Academy of Sciences, Irkutsk, 664033 Russia e-mail: bagrat@irioch.irk.ru

Received September 28, 2006

Abstract—We prepared for the first time NH-containing amidosulfites, polyfluoroalkyl *N*-(trifluoro-methyl-sulfonyl)amidosulfites $CF_3SO_2NHS(O)OR_F$, by reaction of N-sulfinyl-trifluoromethanesulfonamide $CF_3SO_2N=S=O$ with alcohols R_FOH . Amidosulfites were formed also in reaction of chlorosulfites $R_FOS(O)Cl$ with trifluoromethanesulfonamide, with its sodium salt, and N-trimethylsilyl derivative.

DOI: 10.1134/S1070428007080040

Organic derivatives of sulfurous acid, like dialkyl sulfites (RO)₂S=O, chlorosulfites ROS(O)Cl (intermediates in alcohols chlorination with thionyl chloride), and N-sulfinylamines RN=S=O, are well known and extensively used as very reactive synthons [1–11]. In contrast, amidosulfites ROS(O)NHR' are unstable intermediates whose formation has been only presumed, for instance, in addition reactions of alcohols ROH to substituted N-sulfinylamines R'N=S=O [12, 13]. Only cyclic amidosulfites ROS(O)NR' were stable, first obtained by Etlis et al [14] (and not in [15] as claimed Deyrup and Moyer). Under acid conditions the amidosulfites readily hydrolyzed with SO₂ liberation [14, 16, 17]. As to acyclic amidosulfites, only N,N-dialkyl amidosulfites ROS(O)NMe2 prepared either by aminolysis of chloro-sulfites ROS(O)Cl [18], or from tetraalkyl diamidosulfites and phenyl isocyanate [19, 20].

$$ROS(O)Cl + R'_2NH \longrightarrow ROS(O)NR'_2$$

$$\underbrace{ROH}_{(R'_2N)_2S=O + PhN=C=O]} (1)$$

Many among the compounds decomposed on heating with SO_2 elimination and formation of tertiary amines [20]. Amidosulfites containing an NH group were not described.

Among N-functionally substituted N-sulfinylamines the best understood are N-sulfinylsulfonamides $RSO_2N=S=O$ formed at treating with thionyl chloride of aromatic [10, 11] or perfluoroalkyl-substituted sulfonamides [12, 13]. N-Sulfinylperfluoroalkanesulfonamides $R_{\rm F}SO_2N=S=O$ are very reactive. At treating the substances with aromatic aldehydes [21, 22], dimethylformamide [22], and carboxylic acids [23] SO₂ liberated and formed products of general formula R_FSO₂N=Y $[Y = Ar, CHNMe_2, and C(OH)R' respectively]$. In the latter case the prototropic tautomerization led to the formation of mixed amides of carboxylic and sulfonic acids R_FSO₂NHC(O)R'. With anilines ArNH₂ transamination occurred giving amides R_FSO₂NH₂ and N-sulfinylanilines ArN=S=O[12], and the treatment with alkene oxides gave rise to N-perfluoroalkanesulfonylsubstituted cyclic amidosulfites[24]. Adducts like R_FSO₂NHS(O)X were successfully prepared only with PH- and CH-acids $[X = P(O)(OMe)_2, CH(CHCOOEt)_2]$ [12]. The attempts to stop the reaction with proton-donor reagents ROH (water, alcohols, acids, amines) at the stage of adducts R_FSO₂NHS(O)OR formation were doomed to failure. The reaction with alcohols gave rise to dialkyl sulfites and perfluoroalkanesulfonamides, and it was stated in [12] that all attempts to isolate the intermediate amidosulfites $R_FSO_2NHS(O)OR$ were unsuccessful.

$$R_{F}SO_{2}N=S=O + R'OH \longrightarrow [R_{F}SO_{2}NHS(O)OR']$$

$$\xrightarrow{R'OH} R_{F}SO_{2}NH_{2} + (R'O)_{2}S=O \qquad (2)$$

 $\begin{array}{ll} R_{\rm F} &=& I({\rm CF}_2)_2 O({\rm CF}_2)_2, & C I({\rm CF}_2)_2 O({\rm CF}_2)_2, \\ H({\rm CF}_2)_2 O({\rm CF}_2)_2; \, R' = C H_3, \, {\rm Me}_3 C, \, H({\rm CF}_2)_2 C H_2. \end{array}$

e

We found that the reaction of equimolar amounts of N-sulfinyltrifluoromethanesulfonamide $CF_3SO_2N=S=O$ (I) and fluorinated alcohols R_FOH II led to the formation of *N*-[(polyfluoro-alkoxy)sulfinyl]trifluoromethane-sulfonamides IIIa–IIIc.

$$CF_{3}SO_{2}N=S=O + R_{F}OH \longrightarrow CF_{3}SO_{2}NHS(O)OR_{F}$$

$$I IIIa-IIIc (3)$$

$$R_{F} = CH_{2}(CF_{2})_{2}H (a), CH_{2}(CF_{2})_{4}H (b), CH_{2}CF_{3} (c).$$

The structure of compounds **IIIa–IIIc** was unambiguously proved by the presence in their ¹H NMR spectra of signals belonging to diastereotopic protons of the CH₂ group in the radical R_F that appear as two *AB* quartets (due to coincidence of coupling constants ${}^{2}J_{HH}$ and ${}^{3}J_{HF}$ for compounds **IIIa** and **IIIb**) or as two doublets of quartets (for compound **IIIc**) in the region 4.3–4.7 ppm with a constant ${}^{2}J(H^{A}H^{B}) \sim 13$ Hz. The observed spectral pattern is caused by the presence in these molecules of a chiral center (sulfur atom). This picture coincides with that described for their structural analogs CH₃CH₂OS(O)CF₃ and CF₃CH₂OS(O)CF₃ [3, 4, 25].

The relative stability of amidosulfites **III** cannot be directly ascribed to the higher acidity of the polyfluorinated alcohols compared to their nonfluorinated analogs, for the reaction of even more acidic substances, for instance, carboxylic acids, with *N*-sulfinylperfluoroalkanesulfonamides $R_FSO_2N=S=O$ proceeds with sulfur dioxide elimination and results in *N*-perfluoroalkanesulfonamides R_FSO_2NHCOR [23].

We also investigated the alternative procedures for preparation of amidosulfites III by reaction (4) of N-substituted trifluoromethanesulfonamide CF_3SO_2NHR' (IV) with chlorosulfites of polyfluorinated alcohols $R_FOS(O)Cl$ (V) or by a three-component reaction involving trifluoromethanesulfonamide IVa, thionyl chloride, and polyfluorinated alcohols II.

In all cases on mixing the components at room temperature or at slight heating, as in reaction (3), amidosulfites **III** were obtained. Their formation was

$$CF_{3}SO_{2}NHR' + R_{F}OS(O)Cl \longrightarrow R_{F}OS(O)NHSO_{2}CF_{3}$$

IVa-IVc Va-Vc IIIa-IIIc

$$\leftarrow CF_3SO_2NH_2 + SOCl_2 + R_FOH$$
(4)
IVa IIa-IIc

R' = H (a), SiMe₃ (b), Na (c); $R_F = CH_2(CF_2)_2H$ (a), CH₂(CF₂)₄H (b), CH₂CF₃ (c).

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 43 No. 8 2007

confirmed by the presence in the ¹H NMR spectra of the same multiplet of the diastereotopic protons of the CH_2 group (see the figure), and also by comparison with the published data on the chemical shifts and coupling constants in the ¹H, ¹³C, and ¹⁹F NMR spectra of the initial compounds and probable reaction products, like $R_FOS(O)Cl$ [5, 9] and $(R_FO)_2S=O$ [12].

 $CF_3SO_2NHSiMe_3 + (Va); (e) (IIa) + (IVa) + SOCl_2.$

Compounds **III** are readily hydrolyzed giving trifluoromethanesulfonamide **IVa**, alcohol R_FOH , and SO₂.

EXPERIMENTAL

NMR spectra were registered on a spectrometer Bruker DPX-400 [operating frequencies 400 (¹H), 100 (¹³C), and 376 MHz (¹⁹F)], internal reference HMDS, chemical shifts are reported with respect to TMS (¹H, ¹³C) and CCl₃F (¹⁹F).

Chlorosulfites of polyfluorinated alcohols V were obtained by procedure [9]. All reactions were carried out under an argon atmosphere.

3-[(Chlorosulfinyl)oxy]-1,1,2,2-tetrafluoropropane (Va). Yield 75%, bp 22–23°C (2 mm Hg), n_D^{19} 1.3860 {bp 61°C (40 mm Hg), n_D^{20} 1.3704 [5]}. ¹H NMR spectrum (CDCl₃), δ , ppm: 4.56 d.t (1H, H^A, ²J_{HH} 11.8, ³J_{HF} 11.8 Hz), 4.81 d.t (1H, H^B, ²J_{HH} 11.8, ³J_{HF} 11.8 Hz), 5.92 t (1H, CHF₂, ²J_{HF} 52.9 Hz). ¹³C NMR spectrum (CDCl₃), δ , ppm: 59.20 t (CH₂, ²J_{CF} 30.0 Hz), 109.15 t.t (CHF₂, ¹J_{CF} 250.7, ²J_{CF} 36.6 Hz), 113.48 t.t (CF₂, ¹J_{CF} 250.6, ²J_{CF} 28.8 Hz). ¹⁹F NMR spectrum (CD₃CN), δ , ppm: –122.41 s (2F, CF₂), –136.83 d.d (2F, CHF₂, J 53.4, 12.05 Hz).

5-[(Chlorosulfinyl)oxy]-1,1,2,2,3,3,4,4-octafluoropentane (Vb). Yield 87%, bp 40–42°C (2 mm Hg), n_D^{18} 1.3680 {bp 64°C (5 mm Hg), n_D^{20} 1.3630 [9], bp 98.5–99°C (50 mm Hg), n_D^{20} 1.3580 [5]}. ¹H NMR spectrum (CDCl₃), δ , ppm: 4.86–4.89 m (2H, CH₂), 6.06 t (1H, CHF₂, ³J_{HF} 51.96 Hz). ¹³C NMR spectrum (CDCl₃), δ , ppm: 59.14 t (CH₂, ²J_{CF} 27.5 Hz), 107.59 t.t (CHF₂, ¹J_{CF} 254.4, ²J_{CF} 31.3 Hz), 110.08 t.t (CF₂, ¹J_{CF} 264.14, ²J_{CF} 30.1 Hz), 110.71 t.t (CF₂, ¹J_{CF} 264.45, ²J_{CF} 33.3 Hz), 113.87 t.t (CF₂, ¹J_{CF} 258.9, ²J_{CF} 31.3 Hz). ¹⁹F NMR spectrum (CD₃CN), δ , ppm: –137.31 d (2F, CHF₂, ²J_{HF} 52.2 Hz), –129.83 s (2F, CHF₂C<u>F₂), –125.10 s (2F, CH₂CF₂), –119.67 quintet (2F, CF₂C<u>F₂CF₂, ³J_{FF} 11.8 Hz).</u></u>

2-[(Chlorosulfinyl)oxy]-1,1,1-trifluoroethane (Vc). Yield 40%, bp 92–96°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 4.65 d (2H, CH₂, ² J_{HF} 67.5 Hz). ¹³C NMR spectrum (CDCl₃), δ, ppm: 59.84 q (CH₂, ² J_{CF} 38.8 Hz), 122.12 q (CF₃, ¹ J_{CF} 277.3 Hz). ¹⁹F NMR spectrum (CDCl₃), δ, ppm: -73.88 t (3F, CF₃CH₂, ³ J_{HF} 8.0 Hz).

N-[(2,2,3,3-Tetrafluoropropoxy)sulfinyl]trifluoromethanesulfonamide (IIIa). a. To 0.195 g (1 mmol) of compound I was added at vigorous stirring while cooling with ice (5°C) 0.132 g (1 mmol) of 2,2,3,3-tetrafluoropropanol (IIa), the mixture was stirred at room temperature for 6 h, left standing at this temperature for 16 h, and then it was evaporated to dryness. Yield 0.46 g (70%), colorless crystals that sublime with decomposition at 70°C. ¹H NMR spectrum (CD₃CN), δ , ppm: 4.41 d.t (1H, H^A, ${}^{2}J_{HH}$ 13.1, ${}^{3}J_{HF}$ 13.1 Hz), 4.53 d.t (1H, H^{B} , ${}^{2}J_{HH}$ 13.2, ${}^{3}J_{HF}$ 13.2 Hz), 6.17 t.t (CHF₂, ${}^{2}J_{HF}$ 52.3, ${}^{3}J_{\text{HF}}$ 4.6 Hz), 6.62 br.s (1H, NH). ${}^{13}\text{C}$ NMR spectrum $(CD_3CN + CDCl_3)$, δ , ppm: 58.38 t $(CH_2, {}^2J_{CF} 29.1 \text{ Hz})$, 109.74 t.t (CHF₂, ${}^{1}J_{CF}$ 250.3, ${}^{2}J_{CF}$ 35.3 Hz), 114.56 t.t (CF₂, ¹*J*_{CF} 250.5, ²*J*_{CF} 27.6 Hz), 120.17 q (CF₃SO₂, ¹*J*_{CF} 319.4 Hz). ¹⁹F NMR spectrum (CD₃CN + CDCl₃), δ , ppm: -80.41 s (3F, CF₃SO₂), -125.38 m (2F, CF₂), -139.36 d (2F, CHF₂, ²*J*_{HF} 52.2 Hz). Found, %: C 13.94;

H 1.09; N 4.01. $C_4H_4F_7N_1O_4S_2$. Calculated, %: C 14.68; H 1.23; N 4.28.

b. To a solution of 0.745 g (5 mmol) of compound **IVa** in 2 ml of CD₃CN was added at stirring and cooling to 5°C 1.07 g (5 mmol) of sulfinylchloride **Va**. Signals in the ¹H NMR spectrum of the reaction mixture after stirring for 1.5 h at room temperature coincided with the signals of amidosulfite **IIIa** prepared by procedure *a* (see the figure, *b*).

c. To 1.11 g (5 mmol) of *N*-trimethylsilyltrifluoromethanesulfonamidea (**IVb**) was added at stirring 1.07 g (5 mmol) of sulfinylchloride **Va**. Signals in the ¹H NMR spectrum of the reaction mixture after stirring for 1 h at room temperature coincided with the signals of amidosulfite **IIIa** prepared by procedure *a* (see the figure, *c*).

d. A mixture of 0.40 g (2.3 mmol) of trifluoromethanesulfonamide sodium salt (**IVc**), 0.56 g (2.6 mmol) of sulfinylchloride **Va**, and 2 ml of CD₃CN was stirred at room temperature for 1 h, then heated at 80°C for 10 min. Signals in the ¹H NMR spectrum of the reaction mixture registered after cooling coincided with the signals of amidosulfite **IIIa** prepared by procedure *a* (see the figure, *d*).

e. A mixture of 0.149 g (1 mmol) of trifluoromethanesulfonamide (**IVa**), 0.132 g (1 mmol) of 2,2,3,3-tetrafluoropropanol (**IIa**), and 0.118 g (1 mmol) of thionyl chloride in 2 ml of benzene was stirred at room temperature for 4 h. On evaporating benzene in a vacuum in the ¹H NMR spectrum of the residue signals were observed coinciding with the signals of amidosulfite **IIIa** prepared by procedure *a* (see the figure, *e*).

N-[(2,2,3,3,4,4,5,5-Octafluoropentyloxy)sulfinyl]trifluoromethanesulfonamide (IIIb) was prepared similarly to compound **IIIa** by procedure a. ¹H NMR spectrum (CD₃CN + CDCl₃), δ , ppm: 4.63 d.t (1H, H^A, ${}^{2}J_{\text{HH}}$ 13.6, ${}^{3}J_{\text{HF}}$ 13.6 Hz), 4.50 d.t (1H, H^B, ${}^{2}J_{\text{HH}}$ 13.3, ${}^{3}J_{\text{HF}}$ 13.3 Hz), 6.34 t.t (CHF₂, ${}^{2}J_{\text{HF}}$ 51.5, ${}^{3}J_{\text{HF}}$ 6.7 Hz), 6.53 br.s (1H, NH). 13 C NMR spectrum (CD₃CN + CDCl₃), δ , ppm: 58.88 t (CH₂, ²J_{CF} 26.8 Hz), 109.03 t.t $(C^{5}F_{2}, {}^{1}J_{CF} 253.2, {}^{2}J_{CF} 31.1 \text{ Hz}), 115.59 \text{ t.t } (C^{2}F_{2},$ ¹*J*_{CF} 256.7, ²*J*_{CF} 31.3 Hz), 120.78 q (CF₃SO₂, ${}^{1}J_{CF}$ 319.4 Hz). We failed to identify the signals of atoms C³ and C⁴ because of their low intensity. ¹⁹F NMR spectrum (CD₃CN), δ , ppm: -80.52 sC (3F, CF₃SO₂), -120.20 quintet (2F, C³F₂, ³J_{FF} 12.3 Hz), -125.47 s (2F, C²F₂), -130.48 s (2F, C⁴F₂), -138.74 d (2F, CHF₂, $^{2}J_{\rm HF}$ 51.6 Hz).

1123

N-[(2,2,2-Trifluoroethoxy)sulfinyl]trifluoromethanesulfonamide (IIIc) was prepared similarly to compound IIIa by procedure *a*. ¹H NMR spectrum (CD₃CN), δ, ppm: 4.48 d.q (1H, H^A, ²J_{HH} 12.8, ³J_{HF} 8.4 Hz), 4.56 d.q (1H, H^B, ²J_{HH} 12.8, ³J_{HF} 8.4 Hz), 6.63 br.s (1H, NH). ¹³C NMR spectrum (CD₃CN), δ, ppm: 59.61 q (CH₂, ²J_{CF} 37.3 Hz), 120.91 q (CF₃SO₂, ¹J_{CF} 318.5 Hz), 124.23 q (<u>C</u>F₃CH₂, ¹J_{CF} 276.7 Hz). ¹⁹F NMR spectrum (CD₃CN), δ, ppm: -80.65 s (1F, CF₃SO₂), -74.78 t (1F, CF₃CH₂, ³J_{HF} 8.6 Hz).

The study was carried out under a financial support of the Russian Foundation for Basic Research (grant no. 07-03-00425).

REFERENCES

- 1. Van Woerden, H. F., Chem. Rev., 1963, vol. 6, p. 557.
- 2. Whitesell, J.K. and Wong, M.-S., J. Org. Chem., 1994, vol. 59, p. 597.
- 3. Seel, F., Boudier, J., and Gombler, W., *Chem. Ber.*, 1969, vol. 102, p. 443.
- 4. De Marco, R.A., Kovacina, T.A., and Fox, W.B., *J. Fluor. Chem.*, 1975, vol. 6, p. 93.
- Rakhimov, A.I. and, Vostrikova, O.V., Zh. Org. Khim., 1999, vol. 35, p. 815.
- 6. Rakhimov, A.I., Nalesnaya, A.V., and Vostrikova, O.V., *Zh. Org. Khim.*, 2003, vol. 39, p. 949.
- 7. Rakhimov, A.I., Nalesnaya, A.V., and Vostrikova, O.V., *Zh. Prikl. Khim.*, 2004, vol. 77, p. 1573.
- Rakhimov, A.I., Nalesnaya, A.V., and Vostrikova, O.V., *Zh. Obshch. Khim.*, 2004, vol. 74, p. 693.
- 9. Rakhimov, A.I., Nalesnaya, A.V., Fedunov, R.G., and

Vostrikova, O.V., Zh. Obshch. Khim., 2004, vol. 74, p. 868.

- Kresze, G., Maschke, A., Albrecht, R., Bederke, K., Patzschlze, M. P., Smalla, M., and Trede, A., *Angew Chem.*, 1962, vol. 74, p. 135.
- 11. Kresze, G. and Wucherpfennig, W., *Angew Chem.*, 1967, vol. 79, p. 109.
- 12. Li, A.W., Xu, B., Wang, C.X., and Zhu, S.Z., *J. Fluor. Chem.*, 1994, vol. 69, p. 85.
- 13. Zhu, S.Z. and He, P., Curr. Org. Chem., 2004, vol. 8, p. 97.
- 14. Etlis, V.S., Sineokov, A.P., and Sergeeva, M.E., *Khim. Geterotsikl. Soedin.*, 1966, p. 682.
- 15. Deyrup, J. A. and Moyer, C. L., J. Org. Chem., 1969, vol. 34, p. 175.
- 16. Cox, S., El, Dusouqui, O.M.H., McCormack, W., and Tillett, J.G., *J. Org. Chem.*, 1975, vol. 40, p. 949.
- 17. Kütük, H., Bekdemir, Y. and Turkoz, N., *Phosphorus, Sulfur, Silicon*, 2006, vol. 181, p. 931.
- 18. Zinner, G., Angew Chem., 1957, vol. 69, p. 93.
- 19. Mukaiyama, T., Shimizu, H., and Takei, H., *J. Org. Chem.*, 1967, vol. 32, p. 3475.
- 20. Takei, H., Shimizu, H., Higo, M., and Mukaiyama, T., *Bull. Chem. Soc.*, 1968, vol. 41, p. 1925.
- 21. Zhu, S.Z., Li, A.W., and Zhu, Y.H., *J. Fluor. Chem.*, 1993, vol. 60, p. 283.
- 22. Shainyan, B.A., and Tolstikova, L.L., *Zh. Org. Khim.*, 2005, vol. 41, p. 1006.
- 23. Zhu, S.Z., Xu, B., and Zhang, J., *J. Fluor. Chem.*, 1995, vol. 74, p. 203.
- 24. Zhu, S.Z., Zheng, J., Xu, B., and Jin, X., *J. Fluor. Chem.*, 1996, vol. 79, p. 49.
- 25. Sauer, D.T. and Shreeve, J.M., *Inorg. Chem.*, 1971, vol. 10, p. 358.